Template:Molecular nanotechnology subfields
A molecular machine, nanite, or nanomachine[1] is a molecular component that produces quasi-mechanical movements (output) in response to specific stimuli (input).[2][3] In cellular biology, macromolecular machines frequently perform tasks essential for life, such as DNA replication and ATP synthesis. The expression is often more generally applied to molecules that simply mimic functions that occur at the macroscopic level. The term is also common in nanotechnology where a number of highly complex molecular machines have been proposed that are aimed at the goal of constructing a molecular assembler.[4][5]
Kinesin walking on a microtubule is a molecular biological machine using protein domain dynamics on nanoscales
For the last several decades, chemists and physicists alike have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world. Molecular machines are at the forefront of cellular biology research. The 2016 Nobel Prize in Chemistry was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa for the design and synthesis of molecular machines.[6][7]
Types[]
Molecular machines can be divided into two broad categories; artificial and biological. In general, artificial molecular machines (AMMs) refer to molecules that are artificially designed and synthesized whereas biological molecular machines can commonly be found in nature and have evolved into their forms after abiogenesis on Earth.[8]
Artificial[]
A wide variety of artificial molecular machines (AMMs) have been synthesized by chemists which are rather simple and small compared to biological molecular machines.[8] The first AMM, a molecular shuttle, was synthesized by Sir J. Fraser Stoddart.[9] A molecular shuttle is a rotaxane molecule where a ring is mechanically interlocked onto an axle with two bulky stoppers. The ring can move between two binding sites with various stimuli such as light, pH, solvents, and ions.[10] As the authors of this 1991 JACS paper noted: "Insofar as it becomes possible to control the movement of one molecular component with respect to the other in a [2]rotaxane, the technology for building molecular machines will emerge", mechanically interlocked molecular architectures spearheaded AMM design and synthesis as they provide directed molecular motion.[11] Today a wide variety of AMMs exists as listed below.
Overcrowded alkane molecular motor.
Molecular motors[]
Molecular motors are molecules that are capable of directional rotary motion around a single or double bond.[12][13][14][15] Single bond rotary motors[16] are generally activated by chemical reactions whereas double bond rotary motors[17] are generally fueled by light. The rotation speed of the motor can also be tuned by careful molecular design.[18] Carbon nanotube nanomotors have also been produced.[19]
Molecular propeller[]
A molecular propeller is a molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers.[20][21] It has several molecular-scale blades attached at a certain pitch angle around the circumference of a nanoscale shaft. Also see molecular gyroscope.
Daisy chain [2]rotaxane. These molecules are considered as building blocks for artificial muscle.
Molecular switch[]
A molecular switch is a molecule that can be reversibly shifted between two or more stable states.[22] The molecules may be shifted between the states in response to changes in pH, light (photoswitch), temperature, an electric current, microenvironment, or the presence of a ligand.[22][23][24]
Rotaxane based molecular shuttle.
Molecular shuttle[]
A molecular shuttle is a molecule capable of shuttling molecules or ions from one location to another.[25] A common molecular shuttle consists of a rotaxane where the macrocycle can move between two sites or stations along the dumbbell backbone.[25][9][26]
Nanocar[]
Nanocars are single molecule vehicles that resemble macroscopic automobiles and are important for understanding how to control molecular diffusion on surfaces. The first nanocars were synthesized by James M. Tour in 2005. They had an H shaped chassis and 4 molecular wheels (fullerenes) attached to the four corners.[27] In 2011, Ben Feringa and co-workers synthesized the first motorized nanocar which had molecular motors attached to the chassis as rotating wheels.[28] The authors were able to demonstrate directional motion of the nanocar on a copper surface by providing energy from a scanning tunneling microscope tip. Later, in 2017, the world's first ever Nanocar Race took place in Toulouse.
Molecular balance[]
A molecular balance[29][30] is a molecule that can interconvert between two and more conformational or configurational states in response to the dynamic of multiple intra- and intermolecular driving forces, such as hydrogen bonding, solvophobic/hydrophobic effects,[31] π interactions,[32] and steric and dispersion interactions.[33] Molecular balances can be small molecules or macromolecules such as proteins. Cooperatively folded proteins, for example, have been used as molecular balances to measure interaction energies and conformational propensities.[34]
Molecular tweezers[]
Molecular tweezers are host molecules capable of holding items between their two arms.[35] The open cavity of the molecular tweezers binds items using non-covalent bonding including hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π interactions, or electrostatic effects.[36] Examples of molecular tweezers have been reported that are constructed from DNA and are considered DNA machines.[37]
Molecular sensor[]
A molecular sensor is a molecule that interacts with an analyte to produce a detectable change.[38][39] Molecular sensors combine molecular recognition with some form of reporter, so the presence of the item can be observed.
Molecular logic gate[]
A molecular logic gate is a molecule that performs a logical operation on one or more logic inputs and produces a single logic output.[40][41] Unlike a molecular sensor, the molecular logic gate will only output when a particular combination of inputs are present.
Molecular assembler[]
A molecular assembler is a molecular machine able to guide chemical reactions by positioning reactive molecules with precision.[42][43][44][45][46]
Molecular hinge[]
A molecular hinge is a molecule that can be selectively switched from one configuration to another in a reversible fashion.[47] Such configurations must have distinguishable geometries; for instance, azobenzene groups in a linear molecule may undergo cis-trans isomerizations[48] when irradiated with ultraviolet light, triggering a reversible transition to a bent or V-shaped conformation.[49][50][51][52] Molecular hinges typically rotate in a crank-like motion around a rigid axis, such as a double bond or aromatic ring.[53] However, macrocyclic molecular hinges with more clamp-like mechanisms have also been synthesized.[54][55][56]
Biological[]

A ribosome performing the elongation and membrane targeting stages of protein translation. The ribosome is green and yellow, the tRNAs are dark blue, and the other proteins involved are light blue. The produced peptide is released into the endoplasmic reticulum.
The most complex macromolecular machines are found within cells, often in the form of multi-protein complexes.[57] Important examples of biological machines include motor proteins such as myosin, which is responsible for muscle contraction, kinesin, which moves cargo inside cells away from the nucleus along microtubules, and dynein, which moves cargo inside cells towards the nucleus and produces the axonemal beating of motile cilia and flagella. "[I]n effect, the [motile cilium] is a nanomachine composed of perhaps over 600 proteins in molecular complexes, many of which also function independently as nanomachines ... Flexible linkers allow the mobile protein domains connected by them to recruit their binding partners and induce long-range allostery via protein domain dynamics."[1] Other biological machines are responsible for energy production, for example ATP synthase which harnesses energy from proton gradients across membranes to drive a turbine-like motion used to synthesise ATP, the energy currency of a cell.[58] Still other machines are responsible for gene expression, including DNA polymerases for replicating DNA, RNA polymerases for producing mRNA, the spliceosome for removing introns, and the ribosome for synthesising proteins. These machines and their nanoscale dynamics are far more complex than any molecular machines that have yet been artificially constructed.[59]
Some biological molecular machines
These biological machines might have applications in nanomedicine. For example,[60] they could be used to identify and destroy cancer cells.[61][62] Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, biological machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[63][64]
Research[]
The construction of more complex molecular machines is an active area of theoretical and experimental research. A number of molecules, such as molecular propellers, have been designed, although experimental studies of these molecules are inhibited by the lack of methods to construct these molecules.[65] In this context, theoretical modeling can be extremely useful[66] to understand the self-assembly/disassembly processes of rotaxanes, important for the construction of light-powered molecular machines.[67] This molecular-level knowledge may foster the realization of ever more complex, versatile, and effective molecular machines for the areas of nanotechnology, including molecular assemblers.
Although currently not feasible, some potential applications of molecular machines are transport at the molecular level, manipulation of nanostructures and chemical systems, high density solid-state informational processing and molecular prosthetics.[68] Many fundamental challenges need to be overcome before molecular machines can be used practically such as autonomous operation, complexity of machines, stability in the synthesis of the machines and the working conditions.[8]
References[]
- ↑ 1.0 1.1 Satir, Peter; Søren T. Christensen (2008-03-26). "Structure and function of mammalian cilia". Histochemistry and Cell Biology 129 (6): 687–93. doi:10.1007/s00418-008-0416-9. PMC 2386530. PMID 18365235. 1432-119X. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2386530.
- ↑ "Artificial Molecular-Level Machines: Which Energy To Make Them Work?". Acc. Chem. Res. 34 (6): 445–455. 2001. doi:10.1021/ar000170g. PMID 11412081. http://pubs.acs.org/cgi-bin/abstract.cgi/achre4/2001/34/i06/abs/ar000170g.html.
- ↑ "The Future of Molecular Machines". ACS Central Science 6 (3): 347–358. March 2020. doi:10.1021/acscentsci.0c00064. PMC 7099591. PMID 32232135. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=7099591.
- ↑ Drexler, K. E. (July 1991). "Molecular directions in nanotechnology" (in en). Nanotechnology 2 (3): 113–118. Bibcode 1991Nanot...2..113D. doi:10.1088/0957-4484/2/3/002. ISSN 0957-4484.
- ↑ "Full Page Reload".
{{cite web}}
: - ↑ Staff (5 October 2016). "The Nobel Prize in Chemistry 2016". Nobel Foundation. https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html.
- ↑ Chang, Kenneth; Chan, Sewell (5 October 2016). "3 Makers of 'World's Smallest Machines' Awarded Nobel Prize in Chemistry". New York Times. https://www.nytimes.com/2016/10/06/science/nobel-prize-chemistry.html.
- ↑ 8.0 8.1 8.2 Erbas-Cakmak, Sundus; Leigh, David A.; McTernan, Charlie T.; Nussbaumer, Alina L. (2015). "Artificial Molecular Machines". Chemical Reviews 115 (18): 10081–10206. doi:10.1021/acs.chemrev.5b00146. PMC 4585175. PMID 26346838. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4585175.
- ↑ 9.0 9.1 Anelli, Pier Lucio; Spencer, Neil; Stoddart, J. Fraser (June 1991). "A molecular shuttle". Journal of the American Chemical Society 113 (13): 5131–5133. doi:10.1021/ja00013a096. PMID 27715028.
- ↑ Bruns, Carson J.; Stoddart, J. Fraser (30 May 2014). "Rotaxane-Based Molecular Muscles". Accounts of Chemical Research 47 (7): 2186–2199. doi:10.1021/ar500138u. PMID 24877992.
- ↑ Kay, Euan R.; Leigh, David A. (24 August 2015). "Rise of the Molecular Machines". Angewandte Chemie International Edition 54 (35): 10080–10088. doi:10.1002/anie.201503375. PMC 4557038. PMID 26219251. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4557038.
- ↑ Fletcher, Stephen P.; Dumur, Frédéric; Pollard, Michael M.; Feringa, Ben L. (2005-10-07). "A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy". Science 310 (5745): 80–82. Bibcode 2005Sci...310...80F. doi:10.1126/science.1117090. ISSN 0036-8075. PMID 16210531. https://www.rug.nl/research/portal/en/publications/a-reversible-unidirectional-molecular-rotary-motor-driven-by-chemical-energy(50a4c59b-e2fd-413b-a58f-bd37494432e9).html.
- ↑ Perera, U. G. E.; Ample, F.; Kersell, H.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G. et al. (January 2013). "Controlled clockwise and anticlockwise rotational switching of a molecular motor". Nature Nanotechnology 8 (1): 46–51. Bibcode 2013NatNa...8...46P. doi:10.1038/nnano.2012.218. ISSN 1748-3395. PMID 23263725.
- ↑ Schliwa, Manfred; Woehlke, Günther (2003-04-17). "Molecular motors". Nature 422 (6933): 759–765. Bibcode 2003Natur.422..759S. doi:10.1038/nature01601. PMID 12700770.
- ↑ van Delden, Richard A.; Wiel, Matthijs K. J. ter; Pollard, Michael M.; Vicario, Javier; Koumura, Nagatoshi; Feringa, Ben L. (October 2005). "Unidirectional molecular motor on a gold surface". Nature 437 (7063): 1337–1340. Bibcode 2005Natur.437.1337V. doi:10.1038/nature04127. ISSN 1476-4687. PMID 16251960. https://pure.rug.nl/ws/files/10188130/2005NaturevDelden.pdf.
- ↑ Kelly, T. Ross; De Silva, Harshani; Silva, Richard A. (9 September 1999). "Unidirectional rotary motion in a molecular system". Nature 401 (6749): 150–152. Bibcode 1999Natur.401..150K. doi:10.1038/43639. PMID 10490021.
- ↑ Koumura, Nagatoshi; Zijlstra, Robert W. J.; van Delden, Richard A.; Harada, Nobuyuki; Feringa, Ben L. (9 September 1999). "Light-driven monodirectional molecular rotor". Nature 401 (6749): 152–155. Bibcode 1999Natur.401..152K. doi:10.1038/43646. PMID 10490022. https://pure.rug.nl/ws/files/3616669/1999NatureKoumura.pdf.
- ↑ Vicario, Javier; Meetsma, Auke; Feringa, Ben L. (2005). "Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification". Chemical Communications 116 (47): 5910–2. doi:10.1039/B507264F. PMID 16317472. https://www.rug.nl/research/portal/en/publications/controlling-the-speed-of-rotation-in-molecular-motors-dramatic-acceleration-of-the-rotary-motion-by-structural-modification(002a32ff-d6bf-4078-a546-c2a1ace86aa2).html.
- ↑ Fennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A. (24 July 2003). "Rotational actuators based on carbon nanotubes". Nature 424 (6947): 408–410. Bibcode 2003Natur.424..408F. doi:10.1038/nature01823. PMID 12879064.
- ↑ Simpson, Christopher D.; Mattersteig, Gunter; Martin, Kai; Gherghel, Lileta; Bauer, Roland E.; Räder, Hans Joachim; Müllen, Klaus (March 2004). "Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers". Journal of the American Chemical Society 126 (10): 3139–3147. doi:10.1021/ja036732j. PMID 15012144.
- ↑ Wang, Boyang; Král, Petr (2007). "Chemically Tunable Nanoscale Propellers of Liquids". Physical Review Letters 98 (26): 266102. Bibcode 2007PhRvL..98z6102W. doi:10.1103/PhysRevLett.98.266102. PMID 17678108.
- ↑ 22.0 22.1 Feringa, Ben L.; van Delden, Richard A.; Koumura, Nagatoshi; Geertsema, Edzard M. (May 2000). "Chiroptical Molecular Switches". Chemical Reviews 100 (5): 1789–1816. doi:10.1021/cr9900228. PMID 11777421. https://pure.rug.nl/ws/files/3616486/1996AdvMaterFeringa.pdf.
- ↑ Knipe, Peter C.; Thompson, Sam; Hamilton, Andrew D. (2015). "Ion-mediated conformational switches". Chemical Science 6 (3): 1630–1639. doi:10.1039/C4SC03525A. PMC 5482205. PMID 28694943. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5482205.
- ↑ Kazem-Rostami, Masoud; Moghanian, Amirhossein (2017). "Hünlich base derivatives as photo-responsive Λ-shaped hinges". Organic Chemistry Frontiers 4 (2): 224–228. doi:10.1039/C6QO00653A. http://pubs.rsc.org/-/content/articlehtml/2017/qo/c6qo00653a.
- ↑ 25.0 25.1 Bissell, Richard A; Córdova, Emilio; Kaifer, Angel E.; Stoddart, J. Fraser (12 May 1994). "A chemically and electrochemically switchable molecular shuttle". Nature 369 (6476): 133–137. Bibcode 1994Natur.369..133B. doi:10.1038/369133a0.
- ↑ Chatterjee, Manashi N.; Kay, Euan R.; Leigh, David A. (2006-03-01). "Beyond Switches: Ratcheting a Particle Energetically Uphill with a Compartmentalized Molecular Machine". Journal of the American Chemical Society 128 (12): 4058–4073. doi:10.1021/ja057664z. ISSN 0002-7863. PMID 16551115.
- ↑ Shirai, Yasuhiro; Osgood, Andrew J.; Zhao, Yuming; Kelly, Kevin F.; Tour, James M. (November 2005). "Directional Control in Thermally Driven Single-Molecule Nanocars". Nano Letters 5 (11): 2330–2334. Bibcode 2005NanoL...5.2330S. doi:10.1021/nl051915k. PMID 16277478.
- ↑ Kudernac, Tibor; Ruangsupapichat, Nopporn; Parschau, Manfred; Maciá, Beatriz; Katsonis, Nathalie; Harutyunyan, Syuzanna R.; Ernst, Karl-Heinz; Feringa, Ben L. (10 November 2011). "Electrically driven directional motion of a four-wheeled molecule on a metal surface". Nature 479 (7372): 208–211. Bibcode 2011Natur.479..208K. doi:10.1038/nature10587. PMID 22071765.
- ↑ Paliwal, S.; Geib, S.; Wilcox, C. S. (1994-05-01). "Molecular Torsion Balance for Weak Molecular Recognition Forces. Effects of "Tilted-T" Edge-to-Face Aromatic Interactions on Conformational Selection and Solid-State Structure". Journal of the American Chemical Society 116 (10): 4497–4498. doi:10.1021/ja00089a057. ISSN 0002-7863.
- ↑ Mati, Ioulia K.; Cockroft, Scott L. (2010-10-19). "Molecular balances for quantifying non-covalent interactions". Chemical Society Reviews 39 (11): 4195–205. doi:10.1039/B822665M. ISSN 1460-4744. PMID 20844782. https://www.pure.ed.ac.uk/ws/files/10097959/Molecular_balances_for_quantifying_non_covalent_interactions.pdf.
- ↑ Yang, Lixu; Adam, Catherine; Cockroft, Scott L. (2015-08-19). "Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions". Journal of the American Chemical Society 137 (32): 10084–10087. doi:10.1021/jacs.5b05736. ISSN 0002-7863. PMID 26159869. https://www.pure.ed.ac.uk/ws/files/24692670/scockroft.docx.
- ↑ Li, Ping; Zhao, Chen; Smith, Mark D.; Shimizu, Ken D. (2013-06-07). "Comprehensive Experimental Study of N-Heterocyclic π-Stacking Interactions of Neutral and Cationic Pyridines". The Journal of Organic Chemistry 78 (11): 5303–5313. doi:10.1021/jo400370e. ISSN 0022-3263. PMID 23675885.
- ↑ Hwang, Jungwun; Li, Ping; Smith, Mark D.; Shimizu, Ken D. (2016-07-04). "Distance-Dependent Attractive and Repulsive Interactions of Bulky Alkyl Groups". Angewandte Chemie International Edition 55 (28): 8086–8089. doi:10.1002/anie.201602752. ISSN 1521-3773. PMID 27159670.
- ↑ Ardejani, Maziar S.; Powers, Evan T.; Kelly, Jeffery W. (2017-08-15). "Using Cooperatively Folded Peptides To Measure Interaction Energies and Conformational Propensities". Accounts of Chemical Research 50 (8): 1875–1882. doi:10.1021/acs.accounts.7b00195. ISSN 0001-4842. PMC 5584629. PMID 28723063. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5584629.
- ↑ Chen, C. W.; Whitlock, H. W. (July 1978). "Molecular tweezers: a simple model of bifunctional intercalation". Journal of the American Chemical Society 100 (15): 4921–4922. doi:10.1021/ja00483a063.
- ↑ Klärner, Frank-Gerrit; Kahlert, Björn (December 2003). "Molecular Tweezers and Clips as Synthetic Receptors. Molecular Recognition and Dynamics in Receptor−Substrate Complexes". Accounts of Chemical Research 36 (12): 919–932. doi:10.1021/ar0200448. PMID 14674783.
- ↑ Yurke, Bernard; Turberfield, Andrew J.; Mills, Allen P.; Simmel, Friedrich C.; Neumann, Jennifer L. (10 August 2000). "A DNA-fuelled molecular machine made of DNA". Nature 406 (6796): 605–608. Bibcode 2000Natur.406..605Y. doi:10.1038/35020524. PMID 10949296.
- ↑ "Nanorobot architecture for medical target identification". Nanotechnology 19 (1): 015103(15pp). 2008. Bibcode 2008Nanot..19a5103C. doi:10.1088/0957-4484/19/01/015103.
- ↑ Wu, Di; Sedgwick, Adam C.; Gunnlaugsson, Thorfinnur; Akkaya, Engin U.; Yoon, Juyoung; James, Tony D. (2017). "Fluorescent chemosensors: the past, present and future". Chemical Society Reviews 46 (23): 7105–7123. doi:10.1039/C7CS00240H. PMID 29019488.
- ↑ Prasanna de Silva, A.; McClenaghan, Nathan D. (April 2000). "Proof-of-Principle of Molecular-Scale Arithmetic". Journal of the American Chemical Society 122 (16): 3965–3966. doi:10.1021/ja994080m.
- ↑ Magri, David C.; Brown, Gareth J.; McClean, Gareth D.; de Silva, A. Prasanna (April 2006). "Communicating Chemical Congregation: A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype". Journal of the American Chemical Society 128 (15): 4950–4951. doi:10.1021/ja058295+. PMID 16608318.
- ↑ Lewandowski, Bartosz; De Bo, Guillaume; Ward, John W.; Papmeyer, Marcus; Kuschel, Sonja; Aldegunde, María J.; Gramlich, Philipp M. E.; Heckmann, Dominik et al. (2013-01-11). "Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine". Science 339 (6116): 189–193. Bibcode 2013Sci...339..189L. doi:10.1126/science.1229753. ISSN 0036-8075. PMID 23307739.
- ↑ De Bo, Guillaume; Kuschel, Sonja; Leigh, David A.; Lewandowski, Bartosz; Papmeyer, Marcus; Ward, John W. (2014-04-16). "Efficient Assembly of Threaded Molecular Machines for Sequence-Specific Synthesis". Journal of the American Chemical Society 136 (15): 5811–5814. doi:10.1021/ja5022415. ISSN 0002-7863. PMID 24678971.
- ↑ De Bo, Guillaume; Gall, Malcolm A. Y.; Kitching, Matthew O.; Kuschel, Sonja; Leigh, David A.; Tetlow, Daniel J.; Ward, John W. (2017-08-09). "Sequence-Specific β-Peptide Synthesis by a Rotaxane-Based Molecular Machine". Journal of the American Chemical Society 139 (31): 10875–10879. doi:10.1021/jacs.7b05850. ISSN 0002-7863. PMID 28723130. http://dro.dur.ac.uk/22931/1/22931.pdf.
- ↑ Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Marcos, Vanesa; Palmer, Leoni I.; Pisano, Simone (September 2017). "Stereodivergent synthesis with a programmable molecular machine". Nature 549 (7672): 374–378. Bibcode 2017Natur.549..374K. doi:10.1038/nature23677. ISSN 1476-4687. PMID 28933436. https://www.research.manchester.ac.uk/portal/en/publications/stereodivergent-synthesis-with-a-programmable-molecular-machine(dd2b7aed-b6ff-455a-8fb7-e31851cea5e6).html.
- ↑ De Bo, Guillaume; Gall, Malcolm A. Y.; Kuschel, Sonja; Winter, Julien De; Gerbaux, Pascal; Leigh, David A. (2018-04-02). "An artificial molecular machine that builds an asymmetric catalyst". Nature Nanotechnology 13 (5): 381–385. Bibcode 2018NatNa..13..381D. doi:10.1038/s41565-018-0105-3. ISSN 1748-3395. PMID 29610529. https://www.research.manchester.ac.uk/portal/en/publications/an-artificial-molecular-machine-that-builds-an-asymmetric-catalyst(569800d8-beb2-4d4a-acd5-84d0369ddabb).html.
- ↑ Kay, Euan R.; Leigh, David A.; Zerbetto, Francesco (January 2007). "Synthetic Molecular Motors and Mechanical Machines". Angewandte Chemie International Edition 46 (1-2): 72–191. doi:10.1002/anie.200504313.
- ↑ Bandara, H. M. Dhammika; Burdette, Shawn C. (2012). "Photoisomerization in different classes of azobenzene". Chem. Soc. Rev. 41 (5): 1809–1825. doi:10.1039/c1cs15179g.
- ↑ Wang, Jing; Jiang, Qian; Hao, Xingtian; Yan, Hongchao; Peng, Haiyan; Xiong, Bijin; Liao, Yonggui; Xie, Xiaolin (2020). "Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer". RSC Advances 10 (7): 3726–3733. doi:10.1039/C9RA10161F.
- ↑ Hada, Masaki; Yamaguchi, Daisuke; Ishikawa, Tadahiko; Sawa, Takayoshi; Tsuruta, Kenji; Ishikawa, Ken; Koshihara, Shin-ya; Hayashi, Yasuhiko et al. (13 September 2019). "Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules" (in en). Nature Communications 10 (1): 4159. doi:10.1038/s41467-019-12116-6. ISSN 2041-1723. https://www.nature.com/articles/s41467-019-12116-6.
- ↑ Garcia-Amorós, Jaume; Reig, Marta; Cuadrado, Alba; Ortega, Mario; Nonell, Santi; Velasco, Dolores (2014). "A photoswitchable bis-azo derivative with a high temporal resolution". Chem. Commun. 50 (78): 11462–11464. doi:10.1039/C4CC05331A.
- ↑ Kazem-Rostami, Masoud (2017). "Design and synthesis of Ʌ-shaped photoswitchable compounds employing Tröger's base scaffold.". Synthesis 49 (6): 1214–1222. doi:10.1055/s-0036-1588913.
- ↑ Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A. (2017). "Artificial molecular motors". Chemical Society Reviews 46 (9): 2592–2621. doi:10.1039/C7CS00245A.
- ↑ Jones, Christopher D.; Kershaw Cook, Laurence J.; Marquez-Gamez, David; Luzyanin, Konstantin V.; Steed, Jonathan W.; Slater, Anna G. (7 May 2021). "High-Yielding Flow Synthesis of a Macrocyclic Molecular Hinge". Journal of the American Chemical Society. doi:10.1021/jacs.1c02891. ISSN 0002-7863. https://pubs.acs.org/doi/10.1021/jacs.1c02891.
- ↑ Despras, Guillaume; Hain, Julia; Jaeschke, Sven Ole (10 August 2017). "Photocontrol over Molecular Shape: Synthesis and Photochemical Evaluation of Glycoazobenzene Macrocycles". Chemistry - A European Journal 23 (45): 10838–10847. doi:10.1002/chem.201701232.
- ↑ Nagamani, S. Anitha; Norikane, Yasuo; Tamaoki, Nobuyuki (November 2005). "Photoinduced Hinge-Like Molecular Motion: Studies on Xanthene-Based Cyclic Azobenzene Dimers". The Journal of Organic Chemistry 70 (23): 9304–9313. doi:10.1021/jo0513616.
- ↑ Donald, Voet (2011). Biochemistry. Voet, Judith G. (4th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 9780470570951. OCLC 690489261.
- ↑ Kinbara, Kazushi; Aida, Takuzo (2005-04-01). "Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies". Chemical Reviews 105 (4): 1377–1400. doi:10.1021/cr030071r. ISSN 0009-2665. PMID 15826015.
- ↑ "Proteins MOVE! Protein dynamics and long-range allostery in cell signaling". Protein Structure and Diseases. Advances in Protein Chemistry and Structural Biology. 83. 2011. pp. 163–221. doi:10.1016/B978-0-12-381262-9.00005-7. ISBN 9780123812629. PMID 21570668. http://linkinghub.elsevier.com/retrieve/pii/B978-0-12-381262-9.00005-7.
- ↑ Amrute-Nayak, M.; Diensthuber, R. P.; Steffen, W.; Kathmann, D.; Hartmann, F. K.; Fedorov, R.; Urbanke, C.; Manstein, D. J. et al. (2010). "Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices". Angewandte Chemie 122 (2): 322–326. doi:10.1002/ange.200905200. PMID 19921669.
- ↑ Patel, G. M.; Patel, G. C.; Patel, R. B.; Patel, J. K.; Patel, M. (2006). "Nanorobot: A versatile tool in nanomedicine". Journal of Drug Targeting 14 (2): 63–7. doi:10.1080/10611860600612862. PMID 16608733.
- ↑ Balasubramanian, S.; Kagan, D.; Jack Hu, C. M.; Campuzano, S.; Lobo-Castañon, M. J.; Lim, N.; Kang, D. Y.; Zimmerman, M. et al. (2011). "Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media". Angewandte Chemie International Edition 50 (18): 4161–4164. doi:10.1002/anie.201100115. PMC 3119711. PMID 21472835. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3119711.
- ↑ Freitas, Robert A. Jr.; Havukkala, Ilkka (2005). "Current Status of Nanomedicine and Medical Nanorobotics". Journal of Computational and Theoretical Nanoscience 2 (4): 471. Bibcode 2005JCTN....2..471K. doi:10.1166/jctn.2005.001. http://www.nanomedicine.com/Papers/NMRevMar05.pdf.
- ↑ Nanofactory Collaboration
- ↑ Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand (2005-06-10). "Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products". Physical Review Letters 94 (22): 220801. arXiv:cond-mat/0701169. Bibcode 2005PhRvL..94v0801G. doi:10.1103/PhysRevLett.94.220801. PMID 16090376.
- ↑ Drexler, K. Eric (1999-01-01). "Building molecular machine systems" (in en). Trends in Biotechnology 17 (1): 5–7. doi:10.1016/S0167-7799(98)01278-5. ISSN 0167-7799. https://www.cell.com/trends/biotechnology/abstract/S0167-7799(98)01278-5.
- ↑ Tabacchi, G.; Silvi, S.; Venturi, M.; Credi, A.; Fois, E. (2016). "Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation". ChemPhysChem 17 (12): 1913–1919. doi:10.1002/cphc.201501160. PMID 26918775.
- ↑ Coskun, Ali; Banaszak, Michal; Astumian, R. Dean; Stoddart, J. Fraser; Grzybowski, Bartosz A. (2011-12-05). "Great expectations: can artificial molecular machines deliver on their promise?". Chem. Soc. Rev. 41 (1): 19–30. doi:10.1039/c1cs15262a. ISSN 1460-4744. PMID 22116531.
Template:Nanotech footer Lua error in Module:Authority_control at line 1020: attempt to index field 'wikibase' (a nil value).